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EXECUTIVE SUMMARY 

The Albany County Water Purification District (ACWPD) and Saratoga County Sewer District (SCSD) are 

evaluating options for a regional biosolids handling facility. Both ACWPD and SCSD have, or will be, 

transitioning away from incineration as the mechanism of biosolids disposal at their wastewater treatment 

Plants and have elected to jointly evaluate a regional biosolids facility that would take advantage of 

capital construction cost and operation and maintenance (O&M) economies of scale. This study 

investigates the economic feasibility of a regional biosolids handling facility, to be located at the ACWPD 

North Plant to take advantage of the existing 925 kW Organic Rankine Cycle (ORC) turbine. 

Projections for loadings to the new regional biosolids facility were made in a previous technical memo 

over a design and planning period ending in 2035. These projections are presented in the tables below. 

Table ES-1: Projected 2035 Baseline Loadings Summary 

Source 

Sludge Flow Dry Solids Loading 

Gal/day or CY/day Dtpd 

Average Conditions 

North Plant Primary Sludge 110,300 9.2 

North Plant TWAS 38,600 8.1 

South Plant Cake 48 CY/day 8.2 

Bethlehem Sludge 9,000 1.6 

East Greenbush/Coeymans Cake 8.3 CY/day 1.4 

SCSD Cake 75 CY/day 13.2 

FOG 40,000 10.0 

Total  51.7 

Maximum Conditions 

North Plant Primary Sludge 230,200 19.2 

North Plant TWAS 54,200 11.3 

South Plant Cake 67 CY/day 11.4 

Bethlehem Sludge 9,000 1.6 

East Greenbush/Coeymans Cake 8.3 CY/day 1.4 

SCSD Cake 93 CY/day 16.5 

FOG 40,000 10.0 

Total  71.4 
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Table ES-2: Projected 2035 Future Expansion Loadings Summary 

Source 

Sludge Flow Dry Solids Loading 

Gal/day or CY/day Dtpd 

Average Conditions 

25% of Hauled Cake Market 52 CY/day 8.8 

25% of HSW/Organic Waste Market 17,500 21.9 

 

A spreadsheet model was developed to track the flow of mass and energy throughout the potential solids 

treatment processes for various operating scenarios at the new regional biosolids facility. The primary 

process inputs to the solids and energy flow model were established by the design criteria analysis. The 

preliminary results of the model are shown in Table ES-3. In total 11 scenarios were evaluated.  

Table ES-3: Initial Model Scenario Outputs 

Scenario 

No. 
Scenario 

Annualized 

Cost ($) 

GHG 

Reduction 

(MT eCO2) 

Net 

kW 

Total 

Project Cap 

Ex ($) 

0 No Project $7,974,000 0 0 $5,600,000 

1 Separate Projects – Class A $6,723,000 NA NA $51,367,000 

2 Separate Projects – Class B $7,571,000 NA NA $66,000,000 

3 
Digestion, Biogas to Boilers, Sludge 

to Landfill 
$7,509,000 2,050 326 $43,364,000 

4 
Digestion, Biogas to Boilers, Class 

B Sludge 
$5,781,000 2,050 326 $43,064,000 

5 
Digestion, PAD, Biogas to Turbine, 

Class B Sludge 
$5,708,000 3,120 848 $52,300,000 

6 Digestion, Lystek, Biogas to Turbine $6,132,000 4,700 1,236 $58,300,000 

7 
WAS Lysis, Digestion, Biogas to 

Boilers, Class B Sludge 
$5,096,000 3,130 498 $42,776,000 

8 
WAS Lysis, Digestion, Biogas to 

Engines, Class B Sludge 
$5,357,000 10,870 2,098 $52,971,000 

9 
WAS Lysis, Digestion, Biogas to 

Turbines, Class B Sludge 
$5,107,000 7,240 1,501 $48,512,000 

10 
WAS Lysis, Digestion, PAD, Biogas 

to Turbines, Class B Sludge 
$5,139,000 4,190 1,017 $52,012,000 

11 
WAS Lysis, Digestion, Lystek, 

Biogas to Turbines 
$5,743,000 6,010 1,429 $58,012,000 
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From there, user selected processes could be activated in isolation or in combination with selections 

affecting model parameters to generate a model output. Model outputs include such parameters as total 

project capital cost, total annualized cost, greenhouse gas reduction, and net electric consumption or 

generation. The results from this analysis provide a quantitative framework to better understand each 

potential operating scenario and to aid in selecting the most beneficial combination of process options for 

the new regional facility. 

Scenarios 2 and 3 presented in Table ES-3 represent ACWPD and SCSD completing separate projects 

for the creation of either a Class A or B biosolid. For the Class A biosolids project for each utility, the 

estimated capital costs are $26,000,000 and annualized costs are $4,340,000 for ACWPD (reference the 

CDM Smith report for Thermal Chemical Hydrolysis Process (TCHP) and the estimated capital costs are 

$19,100,000 and annualized costs are $2,383,520 for SCSD (reference the GHD report utilizing Lystek). 

If SCSD pursued anaerobic digestion, the estimated capital costs would be $40,000,000 and annualized 

costs are $3,370,000 (reference the GHD report with anaerobic digestion and combined heat and power).  

Annualized costs are inclusive of O&M costs, revenues and debit service amortized over 20 years with a 

3% interest rate.   

Several options were examined for potential unit processes at the new regional facility. Solids handling 

processes evaluated for feasibility included: 

• Solids loadout and receiving facilities 

• Improvements to sludge thickening equipment 

• Thermal Alkaline Hydrolysis 

• Mesophilic anaerobic digestion 

• Post Aerobic Digestion (PAD) 

• Lystek 

Several biogas utilization processes were evaluated for feasibility. When examining biogas utilization, 

provisions for keeping the existing ORC turbine in operation were included as part of each option. Biogas 

utilization processes evaluated included: 

• Thermal oil boiler to drive the ORC turbine 

• Gas Turbine Combined Heat and Power (CHP) 

• Reciprocating Engine CHP 

Based on preliminary modeling results and collaborative discussions with ACWPD and SCSD, the most 

beneficial solids process arrangement was a single phase mesophilic anaerobic digestion facility with pre-

digestion thickening and waste activated sludge (WAS) lysis with a thermal alkaline hydrolysis process. 

This would produce a class B biosolids product that would be contract hauled for final end use. This 

process is represented in Scenarios 7, 9 and 10. Scenario 7 represents the most basic improvements for 

anaerobic digestion and biogas utilization, where biogas is utilized to fuel a thermal oil boiler and drive the 

existing ORC. Scenario 9 replaces the thermal oil boiler with a gas turbine CHP, where the waste heat is 

recovered and used to drive the ORC turbine. This would increase energy production by 1 MW. Scenario 

10 includes PAD which would reduce phosphorous and nitrogen in the sludge and increase volatile solids 

destruction to reduce the ultimate sludge hauling and disposal costs.  
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Scenarios 7 and 9 will result in an additional ammonia load to the aeration system. Initial estimates 

indicate that these scenarios could increase ammonia loading by approximately 2,700 lb/day. Depending 

on the month this is between a 60 and 110 percent increase in ammonia loading, which the North Plant 

has sufficient aeration tank and aeration blower capacity. PAD was not recommended for the initial facility 

to reduce capital costs. The PAD process effectively address sidestream nutrient removal and possible 

Class A biosolids generation. Although considered, at this time these drivers are not strong enough to 

warrant the additional capital expenditures. If future permit discharge requirements result in more 

stringent phosphorous and nitrogen limits, PAD could be easily implemented in one of the existing 

aeration tanks. 

Selection of a biogas utilization process required an additional round of scenario modeling and analysis, 

as future expansion, energy prices, and the availability of net metering all have varying effects on the 

most beneficial direction for the new regional facility. Based on current net metering laws, the realized net 

value of the generated electricity is maximized by matching on-site generation with on-site use (i.e., using 

all electricity behind-the-meter), which is currently approximately 1,250 kW. A sensitivity analysis was 

conducted on the chosen solids handling configuration with a thermal oil boiler or a turbine CHP unit for 

biogas utilization. Results indicated that the turbine CHP unit has a higher capital cost but comparable 

annualized cost to the thermal oil boiler option. However, the turbine CHP unit does have significant 

advantages over the thermal oil boiler option if net metering is permitted at the Plant or if PAD is 

implemented in the future by increasing electricity production. With a turbine CHP unit operating solely off 

produced biogas, the plant is expected to produce approximately 969 kW of electricity, all of which can be 

used behind-the-meter. If net metering is permitted, the turbine CHP unit can be operated at maximum 

production by supplementing with natural gas. Under this condition, the facility could be expected to 

produce approximately 2.1 MW of electricity, resulting in approximately $350,000 in annualized cost 

savings compared with no natural gas supplementation. 

For the purpose of planning, Arcadis recommends that ACWPD and SCSD consider moving forward with 

a project capital expenditure budget of $48.5M (for Scenario 9) and within the first three months of the 

design schedule determine if additional funding maybe available after the final 2018 New York State 

budget is passed. Based on the preliminary design, both options have the same annualized cost of 

$5,100,000 (with a 50/50 split) the estimated annual cost per utility to be approximately $2,550,000. 
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1 INTRODUCTION 

The Albany County Water Purification District (ACWPD) and Saratoga County Sewer District (SCSD) are 

evaluating options for a regional biosolids handling facility. ACWPD owns and operates two wastewater 

treatment Plants (Plants), the North and South Plants. SCSD owns and operates a single Plant. All three 

Plants are equipped with sewage sludge incinerators (SSIs) which have historically been the sole 

mechanism of solids disposal at each of the three facilities. Due to increasing emissions regulations and 

the need for large capital upgrades in order to maintain compliance and functionality of the incinerators, 

incineration is not considered viable for future operations. SCSD decommissioned its SSI in 2016 and has 

been hauling dewatered sludge cake to a landfill disposal facility at considerable cost. ACWPD still 

incinerates sludge at both the North and South Plants but plans to discontinue operations and 

decommission the SSIs in the near future.  

Both ACWPD and SCSD recognize that hauling undigested sludge cake to a landfill is not a cost effective 

or sustainable long-term approach to biosolids management. Each organization has individually 

conducted studies into implementing new biosolids treatment onsite. Based on the findings of the 

individual studies, both organizations have elected to jointly evaluate a regional biosolids facility that 

would take advantage of capital construction cost and operation and maintenance (O&M) economies of 

scale. In addition to treating biosolids from the ACWPD and SCSD Plants, this facility could also target 

the import of other municipal sludges, high strength organic waste and/or fats, oils and grease (FOG) 

streams from the surrounding area to further drive beneficial economics and enhance energy recovery. 

The selected site for the new regional biosolids facility was the ACWPD North Plant. This site has several 

beneficial aspects such as greenfield space to build anaerobic digesters, idle aeration tanks that could be 

repurposed and utilized, and an existing (and currently underutilized) Organic Rankine Cycle (ORC) 

turbine system in place that can generate electricity from captured waste heat. The regional biosolids 

facility would treat solids generated onsite at the ACWPD North Plant, receive solids from ACWPD’s 

South Plant and the SCSD Plant, and could also receive imported material from other sources such as 

cake from other municipal treatment Plants, high-strength organic waste from local industries, commercial 

food processing and prepping facilities, and FOG. 

1.1 Purpose 

This study details the development and results from a Solids and Energy Flow Modeling effort, which was 

undertaken to investigate the potential configurations and processes to be included in the new regional 

biosolids facility. The purpose of the study was to determine if a new regional biosolids facility would be 

economically viable. Additional goals of the study included: 

• Establishing the most economical strategy to maximize energy recovery while making use of 

existing facilities on site; 

• Determining the viability of producing Class A biosolids; 

• Developing an overall operational strategy for the regional biosolids facility; 

• Estimating capital and O&M costs for the facility; and 

• Determining how regionalization could make biosolids handling more efficient and effective for both 

ACWPD and SCSD. 
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2 DESIGN CRITERIA FOR FUTURE SOLIDS LOADING 

Projections for loadings to the new regional biosolids facility were made in a previous technical memo, 

Regional Biosolids Facility Design Criteria (included as Appendix A), over a design and planning period 

ending in 2035. The projected future solids loading to the regional biosolids facility was broken into two 

loading scenarios. The “baseline” scenario is comprised of solids sources which are either already 

contributing to the Plant solids loading or can be reasonably depended upon to contribute sludge to the 

facility in the future. The solids streams included in the baseline scenario include: 

• ACWPD North Plant primary sludge and waste activated sludge (WAS) 

• ACWPD South Plant primary sludge and WAS 

• SCSD primary sludge and WAS 

• Village of Coeymans liquid sludge (currently hauled to South Plant) 

• Village of Bethlehem liquid sludge (currently hauled to South Plant) 

• Town of East Greenbush sludge cake (historically hauled to South Plant prior to installation of belt 

filter presses) 

• Projected FOG loading from both counties 

Table 1 summarizes the projected 2035 baseline loadings to the facility. Cake volumetric loading rates 

have been converted to cubic yards per day (CY/day) 

Potential additional loadings were estimated but were not included in the initial study. These loadings may 

be considered as part of future expansion or may be able to be accepted during periods when sludge 

loading to the facility is less than the design loading. Future expansion loadings include: 

• Additional imported sludge cake hauled from nearby wastewater treatment plants 

• Imported organic/high strength waste from nonresidential waste generators 

The actual percentage of the total estimated market for hauled cake or high strength waste which can be 

captured is highly site-specific and can fluctuate quite dramatically. It is typically assumed for high-level 

analysis that 25% of the available market can be captured. Table 2 summarizes the projected 2035 future 

expansion loadings to the regional biosolids facility. 

 

 

 

 

 

 

 

 

 



 

arcadis.com 
G:\PROJECT\02255306.0000\Report\BDC62CE3.docx 3 

Table 1: Projected 2035 Baseline Loadings Summary 

Source 

Sludge Flow Dry Solids Loading 

Gal/day or CY/day dtpd 

Average Conditions 

North Plant Primary Sludge 110,300 9.2 

North Plant TWAS 38,600 8.1 

South Plant Cake 48 CY/day 8.2 

Bethlehem Sludge 9,000 1.6 

East Greenbush/Coeymans Cake 8.3 CY/day 1.4 

SCSD Cake 75 CY/day 13.2 

FOG 40,000 10.0 

Total  51.7 

Maximum Conditions 

North Plant Primary Sludge 230,200 19.2 

North Plant TWAS 54,200 11.3 

South Plant Cake 67 CY/day 11.4 

Bethlehem Sludge 9,000 1.6 

East Greenbush/Coeymans Cake 8.3 CY/day 1.4 

SCSD Cake 93 CY/day 16.5 

FOG 40,000 10.0 

Total  71.4 

 

Table 2: Projected 2035 Future Expansion Loadings Summary 

Source 

Sludge Flow Dry Solids Loading 

Gal/day or CY/day dtpd 

Average Conditions 

25% of Hauled Cake Market 52 CY/day 8.8 

25% of HSW/Organic Waste Market 17,500 21.9 
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3 SOLIDS HANDLING EQUIPMENT AND PROCESSES 

This section describes the current solids handling processes employed at the Plants and provides 

technical descriptions of the various unit processes which were considered to be reutilized or repurposed 

as part of the new regional biosolids facility. 

3.1 Existing Solids Handling Equipment and Processes 

3.1.1 ACWPD North Plant 

Figure 1 presents a layout of the ACWPD North Plant showing the location of the equipment described 

below. 

3.1.1.1 Sludge Holding Tanks 

The North Plant is equipped with four sludge holding tanks with a total storage capacity of approximately 

1.1 million gallons (MG). These tanks are equipped with paddle mixers to prevent settling of sludge and to 

blend primary sludge and WAS into a homogenous mixture. Primary sludge is drawn from the primary 

settling tanks at approximately 2% total solids (TS) and is pumped directly to the sludge holding tanks. 

WAS is pumped to the sludge holding tanks after undergoing thickening in the solids disposal building. 

3.1.1.2 Solids Disposal Building 

The solids disposal building houses sludge thickening and dewatering equipment, along with the 

incinerators. Unthickened WAS is drawn from the return activated sludge (RAS) wet well in the RAS 

pump station adjacent to the secondary clarifiers. Unthickened WAS is pumped to the solids handling 

building, where it is split among five dissolved air flotation thickeners (DAFTs). Currently only three of the 

DAFTs are operational. Sludge is discharged from the DAFTs as thickened WAS (TWAS) and is sent to 

the sludge holding tanks to be blended with primary sludge prior to dewatering. The North Plant adds 

polymer to the DAFT influent to improve solids coagulation and result in a TWAS solids content of 

approximately 5% TS. From the sludge holding tanks, combined sludge is pumped back into the solids 

handling building, where it is fed to two belt filter presses (BFPs). Currently, the BFPs are capable of 

achieving approximately 22% TS. In the new regional biosolids configuration these existing BFPs will be 

repurposed to dewater digested solids from anaerobic digesters prior to loadout for final end use. 

From the BFPs, belt conveyors carry the dewatered cake to the Plant’s incinerators. The Plant has two 

multiple-hearth incinerators (MHIs). These incinerators are currently the final sludge disposal mechanism 

employed by the Plant. The incinerators, which have been running since the 1970s, are expensive to 

operate and maintain with current air emissions requirements and are expected to become even more 

expensive with future regulations. Ash from the incinerators is sent to an on-site lagoon in the northeast 

corner of the Plant site. 
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3.1.1.3 Organic Rankine Cycle Turbine 

The North Plant has an ORC turbine generator which utilizes waste heat from the MHIs to boil an organic 

working fluid (silica oil) to turn a turbine generator and produce electricity. The ORC is similar in nature to 

a steam turbine but with a lower boiling temperature fluid that allows the use of lower grade heat sources. 

Currently the ORC reclaims heat from the incineration flue gases via heat exchangers retrofitted into the 

incinerator exhaust stacks. The heat exchangers heat a thermal oil loop, which is then used to heat the 

working fluid of the ORC. The ORC is currently running well below its rated capacity due to issues with 

these thermal oil heat exchangers. These units have finned tube heat exchange surfaces which 

experience substantial clogging from the ash contained in the incinerator flue gas. At  full capacity, the 

ORC can produce up to 925 net kW of power for internal plant use; however, currently it is typically 

operating at less than half of its rated output. Since the ORC is relatively new and can utilize waste heat 

to generate renewable power, the Plant staff would like to keep the ORC operational as part of the new 

regional biosolids facility. 

3.1.1.4 Aeration Tanks and Blowers 

The North Plant has excess aeration tank capacity, with up to three full tanks (each tank consisting of four 

cells arranged in a row) sitting idle at any given time. Some of the unused tanks could be repurposed for 

a suitable process such as digested sludge holding or post aerobic digestion (PAD). The Plant also has 

two 14,000 scfm rated blowers for aeration, with one typically operating at any time. If these blowers have 

excess aeration capacity, this could also be used to support specific processes. For the purposes of this 

analysis, excess aeration capacity was not considered. 

3.1.2 ACWPD South Plant 

The South Plant contains many of the same unit processes found at the North Plant. Primary sludge is 

drawn from the primary settling tanks at approximately 2% TS and is pumped directly to the three sludge 

holding tanks. Unthickened WAS is drawn from the RAS wet well in the RAS pump station located 

adjacent to the secondary clarifiers and is pumped to the solids disposal building where it is dosed with 

polymer and split among three DAFTs. The DAFTs at the South Plant typically achieve a solids content of 

approximately 5.5% TS. From the DAFTs, the TWAS stream flows into a wet well, and is pumped to the 

sludge holding tanks where it is blended with the primary sludge and with imported sludge from the 

Village of Coeymans and the Village of Bethlehem. 

From the sludge holding tanks, blended sludge is pumped back into the solids disposal building, which 

houses two BFPs. Only one of the BFPs is currently operable. The South Plant typically achieves 

approximately 22% TS. The majority of the solids handling process at the South Plant described up to this 

point will remain unchanged by this project, with the exception of adding a second operational BFP. The 

cake that is produced at the South Plant will be hauled by truck to the North Plant for processing at a 

projected frequency of two truckloads per weekday or 1-2 truckloads per day on a 7-day per week basis. 

Currently, pressed cake at the South Plant is conveyed to a pair of MHIs. As with the North Plant, ash 

from the incinerators is sent to lagoons on the northern side of the site. Periodically, ash is removed from 

the lagoons and sent to a landfill. 
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3.1.3 SCSD Plant 

Primary sludge from the SCSD Plant is drawn from the primary settling tanks and sent directly to one of 

four sludge holding tanks. WAS is drawn from the RAS pump station wet well and pumped to two gravity 

belt thickeners (GBTs), where it is dosed with polymer and thickened. Thickened WAS leaves the GBTs 

at approximately 6% TS and is combined with primary sludge in the sludge holding tanks. The combined 

sludge stream is pumped to two BFPs on the top floor of the solids disposal building. The BFPs produce 

sludge cake at a typical solids content of approximately 22% TS. Pressed cake is conveyed horizontally 

and dropped through a chute into a truck loadout facility on the ground floor. Cake is hauled from the 

Plant to a landfill for disposal. The solids handling process at the SCSD Plant will not be altered by this 

project, with the exception of solids loadout facility improvements. 

3.2 Unit Processes Examined for New Regional Biosolids Facility 

A variety of processes were considered to enhance the performance and feasibility of a regional biosolids 

handling facility. The following section summarizes the improvements being considered and provides a 

brief technical description where appropriate. Model input parameters and project cost estimates are also 

given. Cost estimates, which can be found in Appendix B, include soft cost adders of 11% for Division 1 

work, 30% general contingency, 15% overhead and profit, and 4% for taxes/bonds/insurance. 

Engineering costs are not included in these project cost estimates. Vendor quotes can be found in 

Appendix C. 

3.2.1 Loadout Facilities 

In order to bring solids to the ACWP North Plant for centralized solids treatment, sludge cake loadout 

facilities are necessary at each of the satellite plants. It was determined that hauling liquid sludge from the 

South Plant was undesirable due to the large number of truck trips that would be required on a daily 

basis. Additionally, the cake loadout facility is not operational and needs to be upgraded for final product 

offloading at the new regional biosolids facility. The following sections describe the recommended loadout 

improvements. 

3.2.1.1 SCSD Plant Sludge Cake Loadout Facility 

The SCSD Plant currently disposes of unstabilized sludge solely by hauling to landfill, utilizing an existing 

cake loadout facility. However, the existing loadout facility was intended as a contingency for the SSI, and 

should undergo improvements to better accommodate a permanent switch to cake hauling. The existing 

facility is located in one of two garage bays. The proposed improvements include structural work to widen 

the second bay and allow for two parallel loadout bays. This provides 100% contingency in the event of 

equipment malfunction or scheduled maintenance. The proposed improvements also include installation 

of loadout conveyors. These conveyors are suspended from the ceiling and run the length of a truck bed. 

Knife gates along the length of the conveyor allow loading along the entire length of the bed and facilitate 

the loading process. These conveyors can be fed directly from the floor above, where a screw conveyor 

already runs over both bays on its way from the BFPs to the abandoned incinerator. 

Table 3 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from experience with similar previous projects. The power draw 
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of the new facility was assumed to be approximately equal to the power draw of the existing operations; 

therefore, the net power draw added by the recommended improvements is zero. The SCSD loadout 

facility was considered necessary to the project and is therefore not included as an option in the model 

that can be turned on and off. 

Table 3: SCSD Loadout Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $1,092,000 

Annual O&M Cost ($/yr) $5,800 

Additional Power Draw (kWh/yr) 0 

3.2.1.2 South Plant Sludge Cake Loadout Facility 

The South Plant would also require a permanent cake loadout facility to haul sludge cake to the regional 

biosolids facility at the North Plant. Although the South Plant currently incinerates sludge, it does have a 

contingency loadout facility which can be repurposed. Improvements include installation of a loadout 

conveyor to facilitate the truck loading process. Some re-routing of conveyors from the BFPs on the top 

floor of the solids disposal building would be required. Site improvements such as paving would likely be 

required to permit a truck to navigate the site. Additionally, upgrading the South Plant by adding a second 

dewatering BFP was recommended to add redundancy for cake hauling to the new regional biosolids 

facility. 

Table 4 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from experience with similar previous projects. The power draw 

of the new facility was assumed to be approximately equal to the power draw of the existing operations; 

therefore, the net power draw added by the improvements is zero.  Similar to the loadout facility at the 

SCSD, the South Plant loadout facility was considered necessary to the project and is therefore not an 

option in the model that can be turned on and off. 

Table 4: South Plant Loadout Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $2,696,000 

Annual O&M Cost ($/yr) $18,600 

Additional Power Draw (kWh/yr) 0 

3.2.1.3 North Plant Solids Loadout Facility 

Digested and dewatered solids cake will be hauled from the North Plant to the final end use for the 

regional facility. The North Plant was designed with a contingency loadout facility, but this facility has 

been abandoned and is no longer operational. A new facility would be constructed to the south of the 

solids disposal building with two parallel pull-through loading bays. The conveyors from the BFPs on the 

top floor of the solids disposal building could be re-routed and sent to this facility, which would include 

loadout conveyors. 
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Table 5 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from experience with similar previous projects. The power draw 

of the new facility was assumed to be approximately equal to the power draw of the existing operations; 

therefore, the net power draw added by the improvements is zero. Like the other two loadout facilities, the 

ACWPD North Plant loadout facility is considered a requisite upgrade and is not an option in the model 

that can be turned on and off. 

Table 5: North Plant Loadout Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $2,862,000 

Annual O&M Cost ($/yr) $13,400 

Additional Power Draw (kWh/yr) 0 

3.2.2 Receiving Facilities 

The regional biosolids facility would require facilities for receiving loads not generated onsite at the North 

Plant. These incoming loads would include dewatered sludge cake, liquid sludge and FOG. 

3.2.2.1 Sludge Cake Receiving/Rewetting Facility 

In order to intake sludge cake and liquid sludge from the SCSD Plant and the South Plant (as well as any 

potential future outlying communities or feedstock sources), a receiving/rewetting facility is required at the 

regional facility. Cake will generally be received at approximately 20% TS and will be re-wetted and 

blended with the sludge produced on-site to obtain a homogenous feed for the anaerobic digesters. The 

cake will be rewetted to approximately 6% TS (generally the upper limit at which sludge is still easily 

pumpable) using unthickened WAS from the North Plant and then pumped to the existing sludge holding 

tanks. 

A typical layout for a cake receiving facility consists of a building with a cake hopper set below grade. 

Trucks back up to the hopper, open the cover, and dump a load of sludge cake into it. The hopper will 

have a live bottom consisting of several screw augers or a sliding frame to break up the cake and allow 

an offloading auger to transport it from the hopper and feed it into a sludge cake pump. The cake pump 

sends the cake through a macerator into a blend tank, where unthickened WAS is injected turbulently and 

a mechanical mixer blends and homogenizes to the desired solids content. The mixture is then pumped 

to the sludge holding tank, where it is blended with the rest of the Plant sludge by the sludge holding tank 

mixers. 

For this project, two 100 CY cake hoppers with pumps are recommended to provide 1.4 days of cake 

storage at average conditions and operational redundancy. The liquid and sludge cake receiving facility 

was located adjacent to the sludge holding tanks to minimize pumping distance and to facilitate blending 

into the onsite sludge stream as quickly and easily as possible.  

Table 6 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. The upgrades for the cake receiving facility also included costs for concrete lining 

repairs and the replacement of the existing top mounted mixers in the sludge holding tanks. Values were 
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drawn from vendor quotes and from experience with similar previous projects. The sludge cake 

receiving/rewetting facility is a required component of the project and is not an option in the model that 

can be turned on and off. 

Table 6: Sludge Cake Receiving/Rewetting Station Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $8,101,000 

Annual O&M Cost ($/yr) $62,600 

Additional Power Draw (kWh/yr) 212,300 

3.2.2.2 FOG Receiving Facility 

A FOG receiving facility was included to accept, process, and store incoming FOG loads prior to injecting 

FOG into new digesters. Based on population projections and standard per capita FOG production, it was 

estimated that approximately 40,000 gal/day of FOG may be received at the biosolids facility. A typical 

FOG receiving station consists of a truck unloading slab next to mixed, insulated, heated tanks. Heating is 

required to prevent the FOG from solidifying in the tanks and maintaining pumpability. A recirculation 

pump keeps the contents of the tank mixed and fluid. FOG is received from tanker trucks during normal 

business hours on weekdays but should be metered into the digesters in a constant, steady basis. For 

this reason, three 40,000 gallon FRP tanks with recirculation pumps were recommended for sufficient 

storage and redundancy. The FOG tanks will be heated and insulated to improve the viscosity of the 

FOG. Rock traps and/or other upfront FOG processing to remove debris that may be present in the FOG 

will also be included. 

Table 7 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from experience with similar previous projects. The FOG 

receiving facility is needed for the project and is not an option in the model that can be turned on and off. 

Table 7: FOG Receiving Station Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $2,306,000 

Annual O&M Cost ($/yr) $10,800 

Additional Power Draw (kWh/yr) 391,900 

Tipping Fee ($/gal) $0.03 

3.2.2.3 HSW Receiving Facility 

As part of a potential future expansion of the new regional biosolids facility, a station to receive, process, 

and inject HSW into digesters may be included. This facility will likely be an expansion of the FOG 

receiving facility with additional pre-processing, storage capacity, offloading equipment, and digester 

injection pumps provided as needed depending on the volumes and characteristics of the HSW procured. 
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Table 8 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from experience with similar previous projects. The HSW 

receiving facility is only necessary to the project if the HSW feed stream is activated. When HSW is added 

to the model, the parameters below are automatically added to the model analysis. 

Table 8: HSW Receiving Station Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $1,500,000 

Annual O&M Cost ($/yr) $10,000 

Additional Power Draw (kWh/yr) 130,600 

Tipping Fee ($/gal) $0.03 

3.2.3 Pre-Digestion Sludge Processing 

There were several sludge pre-processing technologies examined to maximize the operational efficiency 

of the new regional biosolids facility. This included a variety of enhancements ranging from screening, to 

thickening, to lysis. 

3.2.3.1 Sludge Screens - Strain Presses 

Sludge screening for primary sludge and incoming loads was included to ensure that trash and debris in 

sludge would not compromise performance of downstream processes. Currently, the North and South 

Plants treat combined sewage and are equipped with 1” bar screens at the headworks which allow for 

considerable trash and debris to pass through and be present within the sludge. Incoming cake loads of 

undetermined quality should also be screened to ensure they do not create downstream maintenance 

issues. The selected screening process was strain presses which pass sludge flow driven by differential 

pressure through a slow rotating screw press. The units typically consist of a screw augur within a 

cylindrical screen which decreases in diameter along the length of the unit. As the auger turns, sludge 

and most biosolids pass through the screen while solids larger than the screen mesh size are retained 

within the screen. These larger solids are conveyed by the screw to the end of the unit, where they are 

compressed against a cone to squeeze liquid from them before dropping out of the unit and into a 

dumpster or other receptacle. The screened sludge continues downstream to further thickening and 

processing before being fed to the digesters. Figure 2 presents a typical schematic of a sludge screen.  

Strain presses were selected for this project because they can handle the solids loading and hydraulic 

loading rates required. Additional benefits of strain presses include their compact footprint, totally 

enclosed construction, and their use of differential pressure to operate, which allows them to be operated 

in-line without additional pumping requirements. 
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Figure 2: Typical Sludge Screen Graphic (from Huber Technology) 

Table 9 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes. Because of the potential for debris to be 

present in the sludge, and the importance of effectively removing it, two sludge screens were 

recommended under all scenarios and were not included as an option in the model.  

Table 9: Sludge Screening Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $890,000 

Annual O&M Cost ($/yr) $8,600 

Additional Power Draw (kWh/yr) 91,500 

3.2.3.2 Sludge Thickening - Gravity Belt Thickeners 

Sludge thickening was examined to provide reduced sludge flows to digesters thereby reducing the 

digester tank volume needed to provide sufficient solids retention time (SRT), reduce digester heating 

loads, and provide concentrated sludge flows to optimize potential lysis downstream.  

GBTs were selected as the thickening technology for examination. GBTs thicken solids by draining the 

free water through a moving permeable belt which retains the solids. Similar to existing DAFT units, GBTs 

typically require a polymer dose to improve solids thickening. Filtrate is collected and returned to the head 

of the Plant, while the retained solids fall or are scraped into a hopper at the end of the unit. Units can be 

enclosed for odor control if desired. GBTs can achieve greater than 6% TS, although it is desirable to limit 

solids content to no greater than 6% TS to maintain sludge pumpability. Figure 3 shows a typical GBT 

installation. 
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Figure 3: Typical GBT Installation (from BDP) 

Table 10 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes. Three 2.0-m GBTs are recommended under 

all scenarios and were not included as an option in the model. O&M costs and power draw from GBTs 

were not included, since it was assumed that use of the GBTs rather than the  existing DAFTs will likely 

result in a net O&M and power savings. Polymer usage is similarly not expected to increase over the 

current DAFT usage, therefore the net polymer cost added by the GBTs was also assumed to be zero. 

Table 10: GBT Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $2,221,000 

Annual O&M Cost ($/yr) $0 

Additional Power Draw (kWh/yr) 0 

Additional Polymer Cost ($/yr) $0 

3.2.3.3 WAS Lysis – Thermal Alkaline Hydrolysis 

Thermal-alkaline hydrolysis is a pre-digestion process that uses caustic soda to raise pH to 11 and hot 

water heating (to 150oF) to hydrolyze WAS. This increases sludge degradability, improves dewaterability 

and decreases viscosity of the sludge. Thermal alkaline hydrolysis requires less equipment and less heat 

input than a thermal hydrolysis system while avoiding the use of steam. It also is designed to treat only 

WAS to maximize hydrolysis effects (although this prevents it from achieving Class A). The resulting lysis 

of cells causes a release of organic acids that return the pH to near neutral. Heated WAS is then mixed 

with cold primary sludge and fed to the anaerobic digesters. For mesophilic digestion the digester heating 

loads are similar with or without the thermal alkaline hydrolysis and recovered hot water heat from 

Combined Heat and Power (CHP) system can be used as a heat source. Thermal alkaline systems have 

a small footprint and have relatively low operations and maintenance requirements. A disadvantage of 
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this process is that it introduces chemical handling (caustic soda) into the solids handling scheme. 

Additionally, there is no pre-thickening step, so the system can only feed sludge to the digesters at the 

same thickness at which it is received. Therefore, the digester feed thickness would be limited by the 

performance of the sludge thickening process upstream. Figure 4 shows a thermal alkaline hydrolysis 

installation. 

 

Figure 4: Pondus© System in Kenosha, WI 

Table 11 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes and experience with similar projects. WAS 

lysis is included as an option in the model; the Table 11 parameters are automatically integrated into the 

analysis when WAS lysis is activated. 

Table 11: WAS Lysis Cost and Performance Parameters 

Parameter Model Value 

Capital Cost ($) $3,317,000 

Annual O&M Cost ($/yr) $50,000 

Power Draw (kWh/yr) 161,200 

Chemical Cost ($/yr) $16,000 

Additional Dewaterability (% TS) 3% 

Reduced Dewatering Polymer Use (lb/dt) 1 

An additional operational benefit from lysing WAS is a significant decrease in viscosity, which greatly 

enhances the ease of sludge pumping, up to %TS concentrations as high as 10% TS. The addition of 
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WAS lysis was projected to allow average sludge feed to digesters to be increased from 6% to 8%TS 

thereby by lowering required digester tank volumes and reducing digester heating loads. 

3.2.4 Single-Stage Mesophilic Anaerobic Digestion 

The new regional biosolids facility includes mesophilic anaerobic digesters to break down and remove 

volatile solids in the influent feed, producing biogas as a beneficial byproduct. The target treatment capacity 

for maintaining mesophilic digestion is a 20-day SRT under average conditions, with one digester unit 

offline. Thus, digester sizing is highly dependent on the level of sludge thickening that can be accomplished 

prior to feeding sludge to the digesters. It should be noted that certain technologies such as thermal-alkaline 

hydrolysis (lysis) could increase the allowable solids content in the digester feed by rendering high-solids 

sludge more pumpable. 

Mesophilic digestion is a common technology in municipal WWTPs. The process consists of sending sludge 

into a heated and mixed tank. A recirculation pump constantly recirculates the contents of the tank through 

a heat exchanger to maintain mesophilic temperatures within the digester. Heating demands are less than 

that of thermophilic digestion, as mesophilic digesters are typically operated at 95oF. However, this means 

that mesophilic digestion alone will not achieve Class A biosolids status. Digestion produces biogas, which 

can be captured in the digester under a floating cover or membrane or sent to a separate gas holder. 

Digested sludge is drawn from the tank and sent downstream for dewatering and disposal. 

For this project, three tanks are proposed, sized such that two tanks can meet the 20-day average SRT. 

Digester size is calculated within the model, and automatically updates when digester feed flow changes 

to maintain the 20-day SRT with two digesters in service. The third tank provides redundancy and can 

operate as a secondary digester which stores the residuals from the other two digesters if necessary. It 

may also be assumed that adding additional types of digester tanks such as a Post Aerobic Digestion 

(PAD) tank would provide enough buffer and additional digestion capacity that an additional redundant 

mesophilic digester tank would not be needed. This would eliminate the need to reserve the third digester 

as a redundant or secondary digester, effectively raising the capacity of the anaerobic digestion process 

and the volume of outside sludges and alternative feedstocks that can be accepted. 

Table 12 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes and experience with similar projects for both 

concrete and steel digesters. Cost was determined on a per MG or per tank basis, since tank size and 

number of tanks were variables within the model. As tank size or number of tanks changes, the cost for 

the digesters automatically updates within the model. 

Table 12: Digester Cost and Performance Parameters 

Parameter Model Value 

(Concrete) 

Model Value 

(Steel) 

Capital Cost ($/MG) $3,305,000 $2,891,000 

Annual O&M Cost ($/yr/tank) $50,000 $50,000 

Power Draw (kWh/yr/tank) 196,000 196,000 
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Depending on upstream process selections made in the model, required digester volume ranges from 5 

to 7 MG. If concrete is selected for digesters, the estimated capital cost range is $15-$20 million. This 

represents the largest capital cost component of the new regional biosolids facility. 

3.2.5 Post Aerobic Digestion (PAD) 

Post Aerobic Digestion (PAD) is the addition of an aerobic digester process following anaerobic digestion. 

PAD provides a range of advantages including an additional 30%-40% destruction of incoming VSR, 

thereby decreasing cumulative digested solids production by 10-20%. It also can remove up to 98% of the 

ammonia load present in digested sludge when operated with intermittent aeration, as well as remove 

organic sulfur compounds that are the main source of odors. PAD also improves dewatering performance 

and lowers the necessary polymer dosage. PAD reactors can also double as sludge storage tanks, which 

may save future capital expenditure. The PAD process includes an increase in annual aeration costs but 

eliminates the need for a separate sidestream treatment process to manage nitrogen and can reduce some 

ortho-phosphorus (ortho-P) by forming struvite as the reactor pH increases. The amount of ortho-P 

reduction will be dependent on the magnesium concentration in the biosolids. Additional magnesium (in the 

form of MgCl2) can be dosed into the PAD reactor to enhance removal of ortho-P. For a system sized for 

the projected digested flow, it is estimated that a blower of approximately 100 hp would be required. There 

is also potential to recover heat from the PAD sludge and transfer that heat into colder incoming digester 

sludge feeds, thereby reducing the overall heating demands for digestion and providing cooling to the PAD 

reactor. 

PAD is not currently recognized as capable of achieving Class A quality material. The temperatures 

maintained in the PAD process are not sufficient to achieve the requirements under Part 503 regulations. 

It should be noted that the issues preventing achieving Class A with PAD are related to defining this newer 

process with regulators, and that the actual pathogen reduction performance of PAD is generally considered 

to be sufficient to achieve Class A quality material. 

This analysis assumed conversion of three available existing aeration tank cells to PAD tankage, for a total 

SRT of approximately 7.5 days. This conversion would include raising the tank walls by three feet to provide 

enhanced oxygen transfer from increased side water depth. The primary capital cost of PAD installation at 

the regional biosolids facility would be these structural alterations and installation of new aeration diffusers 

and blowers. Figure 5 shows a partially drained PAD installation, with the aeration equipment visible. The 

following cost and performance parameters were used as process parameters for the solids flow model. 

An additional benefit of PAD would be its ability to function as a secondary digester, providing some 

storage for digested sludge. This would eliminate the need for a redundant mesophilic digester and allow 

additional digester capacity for importing feedstocks to the facility. 
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Figure 5: Partially Drained PAD Installation (from OVIVO) 

Table 13 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes and experience with similar projects. PAD 

was included as an option within the model. The parameters below are automatically activated and 

integrated into the analysis when PAD is activated within the model. 

Table 13: PAD Cost and Performance Parameters 

Parameter Model Value  

Capital Cost ($) $3,500,000 

Annual O&M Cost ($/yr) $20,000 

Power Draw (kWh/yr) 4,691,000 

Additional VSR 16.5% 

Additional Dewaterability 1.5% 

3.2.6 Lystek 

Lystek is a proprietary technology wherein digested sludge is dewatered and lysed under a thermal-

alkaline reaction. In the Lystek reactor, alkali solution is added to the digested material to raise its pH to 

11 or higher, then low pressure steam is injected to breakdown complex organics. The product of Lystek 

is a liquid solution of approximately 15% to 17% TS and pH 8 to 9 which is rich in COD and other 

nutrients. This product must be stored seasonally and then is typically land applied to nearby agricultural 

sites in the spring and fall. One benefit of Lystek is that they have a delivery model option that includes 

full service management of the final end product, essentially taking responsibility for the solids product 

once it is sent to their unit process by the Plant. Additionally, Lystek’s product is recognized as a Class A 

material, with all biosolids going to beneficial reuse. Lystek has also performed technical analyses 
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demonstrating that a slip stream of lysed product can be recycled back to the anaerobic digesters to 

boost gas production and enhance digester performance, although this operation would increase the 

required digester SRT and has not yet been executed at full scale. 

For this project, the existing BFPs at the North Plant would be repurposed for dewatering digested 

material prior to processing with Lystek, and one additional BFP would be purchased for redundancy. 

Lystek product would be stored seasonally in a bladder reservoir in the ash lagoon to the east of the 

proposed anaerobic digesters. 

Table 14 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes and experience with similar projects. Capital 

cost includes the installed Lystek system, storage requirements, and the additional BFP. O&M costs 

include chemical use and maintenance costs. Lystek was included as an option within the model. The 

parameters below are automatically activated and integrated into the analysis when PAD is activated 

within the model. 

Table 14: Lystek Cost and Performance Parameters 

Parameter Model Value  

Capital Cost ($) $9,500,000 

Annual O&M Cost ($/yr) $800,000 

Power Draw (kWh/yr) 638,140 

Additional VSR 15% 

Product Disposal Cost ($/wt) $25 

3.2.7 Biogas Utilization 

Biogas is an energy by-product of anaerobic digestion that can be utilized in a variety of processes. 

Currently there are not any digestion or biogas systems at the North Plant, so all biogas utilization 

systems would be completely new. There is a waste heat recovery process onsite which is the previously 

described ORC generator powered by the heat from incinerator flue gases. Although the incinerators are 

being decommissioned, the biogas produced by anaerobic digestion provides multiple options for 

generating heat flows that could be utilized to keep the ORC in operation and also increase the output 

capacity of the ORC over current, underutilized levels. Several options were evaluated for biogas 

utilization with each option including a method to provide heat to drive the ORC. 

3.2.7.1 Biogas-Fired Hot Water Boilers 

The biogas can be used to generate hot water using biogas-fired boilers. Boiler processes are typically 

approximately 80% efficient and recover heat in the form of hot water that can be used to heat the 

digesters via sludge-water heat exchangers or can be used for building heating. Typically, minimal biogas 

conditioning is required for combusting biogas in boilers. For the Solids and Energy Flow Model it was 

assumed filters and a chiller would be used to remove particles and moisture prior to the boilers. It was 

assumed new boilers would also be provided with the ability to fire natural gas in the event that biogas 
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was not available. These new boilers would be tied into the existing natural gas hot water boilers in the 

solids disposal building. 

Table 15 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from experience with similar projects. Biogas-fired hot water 

boilers are recommended under all scenarios and are not included as an option in the model. This is 

because boiler heating for digesters is needed as backup even if digesters are primarily to be heated by a 

CHP process. Operating cost and power draw was only activated in the non-CHP options where the 

boiler would be in regular operation as the primary digester heating source.  Those parameters are 

automatically activated and integrated into the analysis when biogas is sent to boilers in the model. 

Table 15: Biogas-Fired Water Boilers Cost and Performance Parameters 

Parameter Model Value  

Capital Cost ($) $750,000 

Annual O&M Cost ($/yr) $25,000 

Power Draw (kWh/yr) 65,350 

Boiler Efficiency 80% 

It should be noted that biogas fired hot water boilers would not provide high enough quality heat to power 

the ORC. So, an additional biogas utilization process would need to be paired with the hot water boilers 

as part of the requirements to keep the ORC in operation. 

3.2.7.2 Biogas-Fired Thermal Oil Heater 

One option for powering the ORC off biogas is to heat the existing thermal oil loop directly with a biogas-

fired thermal oil heater. Thermal oil heaters are available in models which can run off either biogas, 

natural gas, or a blend of biogas and natural gas. A quote from Heatec was solicited for this study. 

Heatec recommended a three-pass heater for ease of maintenance, since biogas can necessitate more 

frequent cleaning. Biogas conditioning for the thermal oil heater would be more extensive, including 

filters, chiller for moisture removal, and an additional activated carbon polishing process to prevent 

excessive contaminant buildup in the thermal oil boiler components. This option also necessitates some 

minor modifications to the thermal oil loop, which were included in the cost estimate. 

Table 16 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from experience with similar projects. Biogas-fired thermal oil 

boilers are included as an option. The parameters below are automatically activated and integrated into 

the analysis when biogas is sent to boilers in the model in amounts greater than what is required for 

digester heating. Heat output from the thermal oil boilers is utilized to power the ORC. 
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Table 16: Biogas-Fired Thermal Oil Heater Cost and Performance Parameters 

Parameter Model Value  

Capital Cost ($) $1,902,000 

Annual O&M Cost ($/yr) $63,000 

Power Draw (kWh/yr) 65,350 

Boiler Efficiency 80% 

3.2.7.3 Medium Turbine CHP 

Biogas can also be combusted in prime mover to turn a generator and produce electricity. Waste heat 

can also be recovered off the combustion reaction for beneficial use to make it a CHP process. For this 

fairly unique application in conjunction with the ORC, a medium gas turbine CHP prime mover was 

examined. Gas turbines are less electrically efficient than the more typical reciprocating engines, but they 

produce a large amount of high temperature exhaust gas that is thermally similar to incinerator flue gas. 

The exhaust from the turbine could be used with a thermal oil heat exchanger to capture the large amount 

of exhaust heat to drive the ORC.  

A quote was solicited for an OPRA OP16-3B industrial single-shaft, all-radial gas turbine. A visual of the 

turbine is shown in Figure 6. This turbine is rated for 1,850 kW and has the ability to burn biogas, natural 

gas, or a blend. The turbine units were originally designed for burning well head gas from oil drilling and 

can operate on very low gas quality and require relatively little maintenance. Biogas conditioning 

requirements would be dictated by the exhaust heat recovery equipment and its resistance to 

contaminants. For the Solids and Energy Flow Model it was assumed filters and a chiller would be used 

to remove particles and moisture prior to the turbine CHP. Downstream thermal oil heat exchangers 

would be constructed of stainless steel or other corrosion resistant materials. The turbine also requires 

significant biogas compression prior to use in CHP. The option includes a two-stage reciprocating 

compressor, which blends the biogas and natural gas and discharges at 180 psig. A new thermal oil heat 

exchanger would be installed in one of the existing incinerator stacks to heat the thermal oil loop. Exhaust 

from the turbine would be ducted directly into the existing incinerator stack, allowing the thermal oil loop 

to remain largely intact. 

Exhaust heat from the turbine would also be utilized to provide heat to the digesters as a primary mode of 

digester heating. There currently is an existing thermal oil to hot water heat exchanger in the basement of 

the solids disposal building. This unit takes heat from thermal oil loop and generates hot water that is tied 

into the existing natural gas boiler hot water loop. Currently this unit only operates as a means of backup 

heating when the ORC is out of service. This unit would be modified to allow for regular operations for 

digester heating when the ORC is also in service. 

Table 17 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes and experience with similar projects. The 

CHP turbine unit is included in the model as an option. The parameters below are automatically activated 

and integrated into the analysis when biogas is sent to the CHP turbine option. 
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Table 17: Turbine CHP Unit Cost and Performance Parameters 

Parameter Model Value  

Capital Cost ($) $7,542,000 

Annual O&M Cost ($/yr) $85,000 

100% Load Electrical Efficiency 23% 

Exhaust Heat Recovery Efficiency 50% 

 

 

Figure 6: Turbine Visual (from OPRA) 

 

 

Figure 7: Turbine Installation (from Kinsley Energy Systems) 
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3.2.7.4 Engines 

Biogas could be combusted in a more traditional reciprocating engine CHP system. Engines have higher 

electrical efficiencies, on the order 40% at full load, and recover waste both as hot water from the engine 

block and hot exhaust gas from the engine. Due to higher energy recovery efficiencies in other parts of 

the process, engines make less exhaust heat that would be available to drive the ORC. Hot water 

recovered directly from the engines could be used to heat digesters without an intermediate hot water 

recovery heat exchanger. Biogas conditioning for engines would be the most extensive, requiring 

hydrogen sulphide (H2S) removal, filters, moisture removal, and siloxane treatment. Based on the 

projected amount of biogas available, the engine system selected for this application was a pair of 

Jenbacher J420 engines each rated for approximately 1,400 kW electric output. These units were 

assumed to be containerized and located in the area adjacent to the ORC. 

Table 18 presents the cost and performance parameters that were used as inputs for the Solids and 

Energy Flow Model. Values were drawn from vendor quotes and experience with similar projects. The 

CHP engine unit is included in the model as an option. The parameters below are automatically activated 

and integrated into the analysis when biogas is sent to the CHP engine option. 

Table 18: Engine CHP Unit Cost and Performance Parameters 

Parameter Model Value  

Capital Cost ($) $10,445,000 

Annual O&M Cost ($/yr) $0.025/kWh 

100% Load Electrical Efficiency 39.4% 

HW Heat Recovery Efficiency 25% 

Exhaust Heat Recovery 

Efficiency 

26% 

3.2.7.5 Maximum Onsite Generation Capacity 

Hourly electrical demand trends at the North Plant were analyzed for 2017 to determine the capacity to 

utilize power generated onsite. This is shown in Figure 8 below. 
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Figure 8: Hourly Electrical Demand Trends at ACWPD North Plant for 2017 

Based on these trends, it appears the average power draw at the Plant is approximately 1,250 kW with 

minimum hour demand for the year of approximately 900 kW. Under current tariff structures, the greatest 

financial benefit associated with on-site electrical generation occurs when all electricity is used on-site, 

behind the meter.  Consequently, the construction and operation of infrastructure that produces greater 

than 1,250 kW on average becomes less financially attractive.  To avoid being required to construct 

additional protective relays to the grid, onsite generation would be capped and would need to incorporate 

control functions that allow generation to closely follow on site loads to prevent export of power.  It should 

be noted that the proposed facilities will result in additional electrical demand that has been considered as 

part of these analyses.    There are ongoing discussions amongst the State electric utilities and the Public 

Services Commission related to distributed generation.  If virtual net metering provisions were enacted for 

biogas-fired generation or alternative rates were set on the wholesale market for renewable energy,  then 

this maximum capacity for onsite generation would not be applicable as excess power could be allocated 

to other County-owned accounts or put back on the grid at a more beneficial price point.   

3.2.8 Solids End Use 

Digested biosolids from the digesters would dewatered in existing BFPs in the solids handling building 

and sent to a final end use application. Various options exist for disposal based on the quality of residuals 

produced. 

3.2.8.1 Disposal to Landfill 

Disposing of solids to landfill is not considered an attractive option, either from a price or sustainability 

standpoint. If the incinerators are decommissioned without constructing the digester facility, hauling to a 
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landfill is the only disposal alternative to incineration. Discussion with local contract haulers indicates that 

a typical fee for hauling residual solids to a landfill is approximately $100 per wet ton. This is consistent 

with what SCSD currently pays for landfill disposal of their solids. Landfill disposal can be activated in the 

model by choosing a percent of digested biosolids to send to landfill. 

3.2.8.2 Disposal of a Class B Material 

Digested biosolids that meet specific time and temperature metrics are considered to be Class B 

materials and can be land-applied at agricultural sites with certain restrictions. Discussion with local 

contract haulers indicates that a typical fee for accepting and hauling Class B material in the area is 

approximately $60 per wet ton. This figure can vary somewhat based on market demand and storage 

requirements, since land application of sludge is seasonal. The rate of $60 per wet ton was reported to be 

a conservative number considering storage. Class B material disposal can be selected in the model by 

choosing a percent of residual solids to have contract hauled and selecting “Class B” in a dropdown 

menu. 

3.2.8.3 Disposal of a Class A Material 

Digested biosolids that meet more stringent time and temperature metrics or have undergone a regulator 

recognized process to further reduce pathogens are considered to be Class A materials and can be used 

in a wide range of agricultural, commercial, and landscaping applications. Discussion with local contract 

haulers indicates that a typical fee for accepting and hauling Class B material in the area is approximately 

$25 per wet ton. Again, this figure can vary somewhat based on market demand and storage 

requirements, since Class A application can be seasonal in nature. The rate of $25 per wet ton was 

reported to be a conservative number considering storage. Class A material disposal can be selected in 

the model by choosing a percent of residual solids to have contract hauled and selecting “Class A” in a 

dropdown menu. 

3.2.8.4 Disposal of Lystek Material 

As discussed previously, Lystek will retain responsibility for the management and distribution of the 

material generated by their process. The estimated cost for those services that was included in Lystek’s 

quote was $25 per wet ton, which is consistent with the estimate obtained for contract hauling Class A 

material. The Lystek disposal fee is automatically activated when Lystek is selected in the model 

4 MODEL METHODOLOGY 

A spreadsheet model was developed to track the flow of mass and energy throughout the potential solids 

treatment processes for various operating scenarios at the new regional biosolids facility. All scenarios 

were evaluated for annualized cost and greenhouse gas (GHG) emissions reductions. The results from 

this analysis provide a quantitative framework to better understand each potential operating scenario and 

to aid in selecting the most beneficial combination of processes for the new regional biosolids facility. 
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4.1 Input and Framework for Solids and Energy Flow Modeling 

The primary process inputs to the solids and energy flow model were established by the design criteria 

analysis described in Section 2. Input values can be referred to in Table 1. From there, user selected 

processes could be activated in isolation or in combination with selections affecting values such as dry 

tons per day, digester feed or cake %TS, chemical costs, volatile solids reduction, etc. Process results 

that were dependent on these selections included wet tons per day to be offloaded, Plant heating loads, 

and digester gas produced for use in energy production. 

Process performance parameters and costs were adapted from vendor quotes, reported project data, 

literature values, and in some cases direct experience with the technology. These parameters were 

documented in Section 3.2. Performance parameters dependent on other processes were built into the 

logic behind the solids and energy flow model. For example, the lysis process improves the dewaterability 

of sludge, and that relationship is calculated automatically in the model when lysis and mechanical 

dewatering technologies are included in the scenario. Activation of a process and its effects also activates 

the capital and operational costs associated with implementing that process. An example of the solids 

and energy flow model dashboard is provided in Figure 9. 

4.2 Outputs for Solids and Energy Flow Modeling 

The two main outputs for the solids and energy flow model are annualized cost and greenhouse gas 

(GHG) emission reductions. Annualized cost translates the estimated capital cost into an annual 

payment, similar to a payment that would be made on a bond. When annualizing capital costs, this 

analysis assumed a 20-year term at a 3% interest rate. Annualized capital costs were combined with the 

yearly O&M costs and estimated net power savings to yield a total annualized cost for each scenario 

examined. 

The reduction in GHG emissions was also quantified for each scenario, with the main reduction source 

being energy recovered from renewable biogas. Energy generated from biogas will offset energy that 

must be generated from fossil fuels. The amount of GHG reduction will depend on the type of energy 

being offset. Provided below are factors for determining CO2 emissions equivalents (CO2e) associated 

with offsetting various types of energy consumption. While GHG emissions are a composite of many 

different gases, emissions are typically converted to CO2 equivalents since CO2 is the predominant 

component in most GHG emissions. 

The CO2e associated with electricity usage was retrieved using eGRID 2014 (the most recent available 

version) which is an EPA created software application. eGRID is used to derive composite data from 

regional electric generation zones to approximate the composite amount of CO2e emitted for each MWh 

of electricity produced/consumed in the region. The reported value for Table 19 is from the NCPP eGRID 

sub-region which contains the Albany and Saratoga area.  

Table 19: Default eCO2 Emissions Factor for Electrical Usage 

Pollutant Electrical Output Emission Rate 

Annual eCO2 emissions 1,254 lb CO2e/MWh 
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The values listed in Table 20 below were taken from Table C-1 of Subpart C to CFR 98 that identifies 

default CO2e emission factors for combustion of natural gas. 

Table 20: Default eCO2 Emissions Factor for Combustion of Natural Gas 

Fuel Type Default high heat value Default eCO2 emission factor 

Pipeline Natural Gas 1.026 x 10-3 mmBtu/scf 53 kg CO2e /mmBtu 

 

The values listed in Table 21 below were taken from the “Carbon Dioxide Emissions Coefficients Table” 

published by the U.S. Energy Information Administration that identifies default CO2e emission factors for 

combustion of diesel fuel. 

Table 21: Default CO2 Emissions Factor for Combustion of Diesel Fuel 

Fuel Type Default eCO2 emission factor 

Diesel Fuel 10.16 kg CO2e /gal 161 lb CO2e /mmBtu 

 

The net GHG emissions for each scenario are calculated as the reduction resulting from using biogas for 

power generation, less the parasitic electric loads, combustion of natural gas, and use of vehicle fuel 

involved with each scenario. 
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5 INITIAL MODEL SCENARIO DEVELOPMENT 

Several initial scenarios were analyzed using the model. The results of this analysis were used to select 

options for further analysis. 

5.1 Improvements Common to All Scenarios 

Certain improvements were determined to be necessary or sensible under all scenarios considered and 

were included in the analyses in that fashion (i.e., as default requirements). As described previously, 

improvements to the loadout facilities at each of the three Plants are required for implementation of any 

regional biosolids facility. Similarly, sludge cake receiving/rewetting and FOG receiving stations are 

required for the intake of solids at the regional facility. The costs for these improvements were carried 

under every regional biosolids facility scenario considered. 

Preliminary analysis of the solids flow demonstrated the most effective configuration of sludge thickening 

at the North Plant. Initially, two basic scenarios were modeled:  

1. Sending the rewetted cake, primary sludge and WAS generated at the North Plant into the sludge 

holding tanks to blend all the sludge into one homogenous digester feed prior to thickening  

2. Sending only rewetted cake and the primary sludge to the sludge holding tanks and thickening 

the WAS stream separately.  

Both scenarios have benefits. Blending all sludge into one homogenous feed before thickening and 

sending to digestion is operationally simpler, consolidating everything into a single feed. However, 

treating WAS as a separate stream significantly reduces the required storage capacity of the sludge 

storage tanks, as unthickened WAS contains a significant amount of water volume which takes up 

storage. Additionally, maintaining a separate WAS stream is necessary for some scenarios, such as WAS 

lysis. Ultimately, preliminary analysis showed that maintaining a separate WAS stream was beneficial 

under all scenarios. If unthickened WAS is sent to the sludge storage tanks, the tanks have capacity for 

less than 2 days of storage under average flow conditions. Thickening the WAS stream separately 

increases the hydraulic retention time of the storage tanks to 5 days under average conditions. 

The proposed reconfigured sludge thickening process would be located in the solids disposal building 

where the DAFTs are currently located. The first step would be sludge screening with strain presses. Two 

strain press units are recommended, one to screen the stream coming from the sludge holding tanks 

(primary and rewetted cake) and one to screen the WAS stream. It is likely that the WAS stream will not 

require screening; thus, two sludge screens can be considered to satisfy redundancy, since in the event 

of equipment malfunction or servicing, the WAS stream can be bypassed around sludge screening. 

The next step would be gravity belt thickening. Three 2.0-m GBTs are recommended, with one dedicated 

to thickening the flow from sludge holding tanks (primary and rewetted cake), one dedicated to thickening 

the WAS stream, and one standby unit. The thickened streams can either be combined or sent 

downstream to the next respective process, depending on what treatment options are selected. 



 

arcadis.com 
G:\PROJECT\02255306.0000\Report\BDC62CE3.docx 30 

5.2 Initial Model Scenarios 

This section describes the scenarios selected for primary analysis. Results of the scenarios are 

summarized at the end of the section. 

5.2.1 Scenario 0: No Project 

This scenario serves as a baseline for comparison. In this scenario, both SCSD and ACWPD would 

abandon and decommission their incinerators, but not implement any additional biosolids handling project 

or process upgrades and improvements. Both facilities would simply dewater their undigested sludge and 

haul it to a landfill for disposal. In the absence of any biosolids handling facility construction, this disposal 

approach would be the only option. 

5.2.2 Scenario 1: Separate Projects, Class A Material 

This scenario combines the results of the feasibility analyses conducted for ACWPD and SCSD to 

individually implement biosolids handling and obtain Class A material. The scenario serves as a baseline 

for comparison. The costs estimated for ACWPD were obtained from a 2016 CDM report entitled Albany 

County Sewer District North Plant Biosolids Feasibility Study. The Class A alternative presented was a 

combination of thermal hydrolysis and digestion. The costs estimated for SCSD were obtained from a 

2016 GHD report entitled Saratoga County Sewer District Incineration Evaluation. The Class A alternative 

presented was a Lystek installation. Table 22 summarizes the estimated costs obtained from the reports. 

Table 22: Separate Projects, Class A Material 

Project Cap Ex ($) Op Ex ($/yr) Net kW 

ACWPD – Thermal Hydrolysis, Digestion $32,267,000 $2,171,000 NA 

SCSD – Lystek $19,100,000 $1,100,000 NA 

Total $51,367,000 $3,271,000 NA 

 

5.2.3 Scenario 2: Separate Projects, Class B Material 

This scenario combines the results of the feasibility analyses conducted for ACWPD and SCSD to 

individually implement biosolids handling and obtain Class B material. The scenario serves as a baseline 

for comparison. The costs estimated for ACWPD were obtained from a 2016 CDM report entitled Albany 

County Sewer District North Plant Biosolids Feasibility Study. The Class B alternative presented was a 

combination of thermal chemical hydrolysis and digestion. The costs estimated for SCSD were obtained 

from a 2016 GHD report entitled Saratoga County Sewer District Incineration Evaluation. The Class B 

alternative presented was an anaerobic digestion installation. Table 23 summarizes the estimated costs 

obtained from the reports. 
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Table 23: Separate Projects, Class B Material 

Project Cap Ex ($) Op Ex ($/yr) Net kW 

ACWPD – Thermal Chemical Hydrolysis, 

Digestion $26,000,000 $2,453,000 NA 

SCSD – Digestion $40,000,000 $683,000 NA 

Total $66,000,000 $3,136,000 NA 

 

5.2.4 Scenario 3: Digestion, Sludge to Landfill, Biogas to Boilers 

This scenario is the most basic regional biosolids option considered. In addition to the loadout facilities, 

receiving facilities, and sludge thickening improvements described above, the scenario includes an 

anaerobic digestion facility consisting of three 2.14 MG digesters. Residual material in this scenario would 

be hauled to a landfill. The digesters in this scenario produce 652 Mcf/day of biogas, which would be sent 

to boilers and a biogas-fired thermal oil heater to provide heat to the digesters and use the ORC to 

produce electricity. 

5.2.5 Scenario 4: Digestion, Sludge Contract Hauled (Class B), Biogas to 

Boilers 

This scenario consists of the three 2.14 MG anaerobic digesters, with the residual material being contract 

hauled as a Class B material at lower cost than sending to a landfill. As in the previous scenario, 652 

Mcf/day of biogas would be produced and sent to boilers and the biogas-fired thermal oil heater. 

5.2.6 Scenario 5: Digestion, PAD, Sludge Contract Hauled (Class B), CHP 

Turbine 

This scenario adds PAD on the back end of the digesters, with the residual material being contract hauled 

as a Class B material. For this scenario, 652 Mcf/day of biogas was produced and sent to a CHP turbine, 

with natural gas blended as needed to keep the turbine and ORC operating in the higher-efficiency part of 

their curves.  

5.2.7 Scenario 6: Digestion, Lystek, CHP Turbine 

This scenario adds Lystek instead of PAD after the digesters. The residual material is disposed of by 

Lystek at their contracted rate. For this scenario, 652 Mcf/day of biogas was produced and sent to a 

turbine, with natural gas blended as needed to keep the turbine and ORC operating in the higher-

efficiency part of their curves. 
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5.2.8 Scenario 7: WAS Lysis, Digestion, Sludge Contract Hauled (Class B), 

Biogas to Boilers 

This scenario adds lysis to the WAS stream prior to digestion, with no PAD or Lystek downstream. Lysis 

has the benefit of rendering the lysed material more digestible and dewaterable, which increases biogas 

output and decreases residual solids for disposal. Lysis has the additional benefit of thickening the 

digester feed. Because lysed material is inherently more liquid and pumpable, sludge in this scenario was 

assumed to be able to be thickened up to 8% TS. This allows for smaller digesters at 1.75 MG, reducing 

capital costs. 

For this scenario, 747 Mcf/day of biogas was produced. The biogas was assumed to be sent to boilers 

and a thermal oil heater to operate the ORC. 

5.2.9 Scenario 8: WAS Lysis, Digestion, Sludge Contract Hauled (Class B), 

Engine CHP with Ductburner 

Solids handling in this scenario matches Scenario 7, but the biogas produced is sent to an engine CHP 

unit. The engine produces electricity, with natural gas combusted in a ductburner and added to the 

exhaust to operate the ORC.  

5.2.10 Scenario 9: WAS Lysis, Digestion, Sludge Contract Hauled (Class B), 

Turbine CHP 

Scenario 9 matches Scenarios 7 and 8 in solids handling, but the biogas produced is sent to a turbine 

CHP unit to produce electricity with the ORC operated off the turbine exhaust. Natural gas is used as a 

supplement in the turbine to operate the turbine and ORC in the higher-efficiency part of their curves. 

5.2.11 Scenario 10: WAS Lysis, Digestion, PAD, Sludge Contract Hauled (Class 

B), Turbine CHP 

Scenario 10 matches Scenario 9, but with PAD added after digestion.  

5.2.12 Scenario 11: WAS Lysis, Digestion, Lystek, Turbine CHP 

Scenario 11 matches Scenario 9, but with Lystek added after digestion. Residual solids would be 

disposed of by Lystek. 

5.3 Initial Model Scenario Results 

The results of the initial model scenario analyses are presented in Table 24. Annualized scenario costs 

and greenhouse gas reduction are plotted in Figure 10. As can be seen, the most expensive option on an 

annualized scenario cost basis is the “No Project” scenario. This scenario is followed by the Class B 

separate projects scenario (Scenario 2), the most basic digester scenario with hauling to landfill (Scenario 

3), and the Class A separate projects scenario (Scenario 1). On a capital cost basis, the separate project 

scenarios (Scenarios 1 and 2) are the most expensive. 
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The initial model scenarios also show that adding WAS lysis reduces capital cost and annualized cost (as 

seen by comparing Scenarios 4 and 7, Scenarios 5 and 10, and Scenarios 6 and 11). This is partially due 

to the accompanying decrease in digester size. When taking into account all the benefits and savings of 

WAS lysis, this process appears to be a very sensible option for the regional facility. 

Table 24: Initial Model Scenario Outputs 

Scenario 

No. 
Scenario 

Annualized 

Cost ($) 

GHG 

Reduction 

(MT eCO2) 

Net 

kW 

Total 

Project Cap 

Ex ($) 

0 No Project $7,974,000 0 0 $5,600,000 

1 Separate Projects – Class A $6,723,000 NA NA $51,367,000 

2 Separate Projects – Class B $7,571,000 NA NA $66,000,000 

3 
Digestion, Biogas to Boilers, Sludge 

to Landfill 
$7,509,000 2,050 326 $43,364,000 

4 
Digestion, Biogas to Boilers, Class 

B Sludge 
$5,781,000 2,050 326 $43,064,000 

5 
Digestion, PAD, Biogas to Turbine, 

Class B Sludge 
$5,708,000 3,120 848 $52,300,000 

6 Digestion, Lystek, Biogas to Turbine $6,132,000 4,700 1,236 $58,300,000 

7 
WAS Lysis, Digestion, Biogas to 

Boilers, Class B Sludge 
$5,096,000 3,130 498 $42,776,000 

8 
WAS Lysis, Digestion, Biogas to 

Engines, Class B Sludge 
$5,357,000 10,870 2,098 $52,971,000 

9 
WAS Lysis, Digestion, Biogas to 

Turbines, Class B Sludge 
$5,107,000 7,240 1,501 $48,512,000 

10 
WAS Lysis, Digestion, PAD, Biogas 

to Turbines, Class B Sludge 
$5,139,000 4,190 1,017 $52,012,000 

11 
WAS Lysis, Digestion, Lystek, 

Biogas to Turbines 
$5,743,000 6,010 1,429 $58,012,000 
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Figure 10: Initial Model Scenario Results 

The scenarios show that both PAD and Lystek add significantly to the capital cost of the project. PAD also 

consumes a large amount of energy due to the aeration equipment, adding significantly to the Plant 

electric load. The North Plant may currently have additional aeration capacity beyond what is required for 

their aeration basins; any excess capacity currently used which could be diverted for use in the PAD 

system could decrease the impact of PAD on the Plant energy consumption and reduce capital costs by 

eliminating the need for new blowers. This analysis does not account for any current excess aeration 

capacity. 

The scenarios also show that adding turbines or engines for electricity production adds capital cost but 

allows for higher electric production and greater greenhouse gas reduction than using the biogas to fire a 

boiler or thermal oil heater. 
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5.3.1 Scenarios Selected for Further Analysis 

Based on the results of the initial modeling analysis, it was decided that WAS lysis appears to make 

sense on a cost basis. WAS lysis was included as a baseline for all scenarios selected for further 

analysis. It was also decided that due to the large capital cost of PAD and Lystek and the somewhat 

limited benefit provided during the initial years of operation, these processes would be evaluated for 

future implementation but not included in this phase of the project. Thus, scenarios selected for further 

analysis included Scenario 7, Scenario 8, and Scenario 9. 

6 FURTHER MODEL ANALYSES 

Currently, net metering is supported in New York State for some renewable generation.  However, 

biogas-fired electricity generation similar to that proposed for this project is not currently eligible. Net 

metering is when a facility has a electric meter that can turn in both directions (import and export) and is 

credited at their current retail rate for all electricity generated over the course of a year (or some other 

pre-determined period), up to their annual consumption.  Electricity that is generated on-site in excess of 

their annual on-site consumption realizes only the avoided wholesale cost of electricity. Since net 

metering is not currently available (although ongoing discussions are taking place within the State), full 

retail value of electricity generated on-site is only realized when all electricity is continuously consumed 

behind the meter. As opposed to net metering where the reconciliation is based on annual use, absent 

net metering the excess electricity produced at any given time (not strictly when it exceeds annual 

consumption) is only valued at the avoided wholesale rate. Virtual net metering and net metering where 

on-site generated electricity can be assigned to any electricity accounts owned by the same entity (versus 

strictly the on-site electricity meter(s)) or to a third party through a power purchase agreement provide 

even greater financial benefits. For the purposes of these analyses, when a scenario considers “net 

metering”, it is assumed that 100% of the on-site generated power can be valued at the retail rate.   

Because the North Plant cannot currently sell electricity on a net meter basis and the current market price 

for the environmental attributes of renewable energy generation (e.g., RECs) is somewhat low, it does not 

currently make sense for the project to produce more electricity than the Plant’s current average usage of 

1250 kW. It is possible that net metering will be permitted in the future. Thus, the scenarios were 

considered in light of both current conditions and potential future electricity tariffs and market structures. 

6.1 Further Analysis of Selected Scenarios 

Costs and assumptions for the three scenarios selected from the initial modeling were refined, and the 

scenarios were re-analyzed. Each of Scenario 7, Scenario 8 and Scenario 9 were divided into sub-

scenarios for analysis. 

6.1.1 Sub-Scenarios 

6.1.1.1 Scenario 7a: Thermal Oil Heater, No Net Metering 

Under Scenario 7a, the full amount of biogas produced by WAS lysis and digestion is sent to hot water 

boilers and a thermal oil heater; no additional natural gas is supplemented for electricity production. 
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Current conditions with no net metering were assumed, so the net electricity production was not allowed 

to exceed 1250 kW under this scenario (because the ORC is the only generator active in this sub-

scenario, 1250 kW of net electric production is not possible anyway). 

6.1.1.2 Scenario 8a: Engine CHP, No Net Metering 

Under Scenario 8a, biogas produced by WAS lysis and digestion is sent to an engine CHP unit to 

produce electricity, hot water, and exhaust to operate the ORC. Current conditions with no net metering 

were assumed, so the net electricity production was not allowed to exceed 1250 kW under this sub-

scenario. Because the engines produce so little exhaust heat, it was necessary to supplement with 9 

mmBTU/hr via a natural gas duct burner in the exhaust stack to provide enough heat to operate the ORC. 

Due to the 1250 kW cap, only 50% of the available biogas was able to be combusted in the engines. The 

balance would have to be flared. 

6.1.1.3 Scenario 9a: Turbine CHP, No Net Metering 

Under Scenario 9a the full amount of biogas produced by WAS lysis and digestion is sent to a CHP 

turbine unit, with the ORC operated off the turbine exhaust. No natural gas is supplemented in this 

scenario. Current conditions with no net metering were assumed, so the net electricity production was not 

allowed to exceed 1250 kW under this scenario. 

6.1.1.4 Scenario 7b: Thermal Oil Heater, Net Metering 

Under Scenario 7b the full amount of biogas produced by WAS lysis and digestion is sent to hot water 

boilers and a thermal oil heater; no additional natural gas is supplemented for electricity production. For 

this sub-scenario net metering was assumed, so the net electricity production was allowed to exceed 

1250 kW. However, because the ORC is the only generator active in this sub-scenario, 1250 kW of net 

electric production is not possible anyway. 

6.1.1.5 Scenario 8b: Engine CHP, Net Metering 

Under Scenario 8b the full amount of biogas produced by WAS lysis and digestion is sent to an engine 

CHP unit to produce electricity, hot water, and exhaust to operate the ORC. For this sub-scenario net 

metering was assumed, so the net electricity production was allowed to exceed 1250 kW. The engines 

were supplemented with 8 mmBTU/hr of natural gas to maximize their output. However, because the 

engines produce so little exhaust heat, it was necessary to supplement with 5 mmBTU/hr via a natural 

gas duct burner in the exhaust stack to provide enough heat to operate the ORC.  

6.1.1.6 Scenario 9b: Turbine CHP, Net Metering 

Under Scenario 9b the full amount of biogas produced by WAS lysis and digestion is sent to a CHP 

turbine unit, with the ORC operated off the turbine exhaust. For this sub-scenario net metering was 

assumed, so the net electricity production was allowed to exceed 1250 kW. The turbine was 

supplemented with 9.5 mmBTU/hr of natural gas to maximize its production. 
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6.1.2 Results of Further Analysis of Selected Scenarios 

The results of the sub-scenario analyses are presented in Table 25 and Figure 11. Scenario 0, the “No 

Project” scenario, is included as well for comparison. The analysis shows that the engine CHP option is 

not well suited to this application. This option has significantly higher capital cost and annualized cost 

compared with the other two options. Additionally, the engine CHP option is operationally intensive and 

cannot be fully utilized in the absence of net metering. In order to maintain operation of the ORC with the 

engines without net metering, natural gas must be supplemented via a duct burner and half of the 

available biogas must be wasted by flaring. The engine CHP can be ruled out of subsequent analyses. 

The analysis also shows that Scenario 7 is not impacted by net metering, since this option cannot 

produce enough electricity to meet the average Plant demand of 1,250 kW. Consequently, Scenario 7a 

and 7b are identical. Under current conditions, Scenario 7a and Scenario 9a have similar annualized cost. 

Scenario 7a has a lower capital cost, but Scenario 9a has additional greenhouse gas reduction. Without 

net metering, the two scenarios are comparable, but the lower capital cost of Scenario 7a gives this 

option a slight edge. However, if net metering is taken into account, the annualized cost of Scenario 9b is 

driven down by the turbine’s ability to produce excess electricity. The advantage in greenhouse gas 

reduction similarly increases under net metering conditions. Therefore, if net metering is expected to be 

available in the future, the turbine CHP option (Scenario 9) is more advantageous than the thermal oil 

heater option (Scenario 7). 

 

Table 25: Results of Further Analysis of Selected Scenarios 

Scenario 

No. 
Scenario 

Annualized 

Cost ($) 

GHG 

Reduction 

(MT eCO2) 

Net 

kW 

Total 

Project Cap 

Ex ($) 

0 No Project $7,974,000 0 0 $5,600,000 

7a 
Thermal Oil Heater, No Net 

Metering 
$4,828,000 2,420 486 $43,500,000 

8a Engine CHP, No Net Metering $5,678,000 1,730 1,184 $52,800,000 

9a Turbine CHP, No Net Metering $4,871,000 4,840 969 $48,600,000 

7b Thermal Oil Heater, Net Metering $4,828,000 2,420 486 $43,500,000 

8b Engine CHP, Net Metering $5,150,000 8,980 2,973 $52,800,000 

9b Turbine CHP, Net Metering $4,518,000 6,350 2,112 $48,600,000 
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Figure 11: Results of Further Analysis of Selected Scenarios 

6.2 Future Implementation of PAD or Lystek 

Scenario 7 and Scenario 9 were also evaluated for their potential compatibility with a future buildout to 

include PAD or Lystek. Additional sub-scenarios were created for each scenario.  Each sub-scenario then 

underwent sensitivity analyses to compare the performance of the thermal oil heater with the turbine CHP 

and to compare the performance of PAD with the performance of Lystek. 

6.2.1 Future PAD or Lystek Sub-Scenarios 

6.2.1.1 Scenario 7c: Thermal Oil Heater, PAD 

Under Scenario 7c, the biogas produced by WAS lysis and digestion would be sent to a thermal oil heater 

and PAD would be implemented after anaerobic digestion. No natural gas was supplemented under this 

scenario. As discussed previously, since Scenario 7 is not impacted by net metering, Scenario 7c applies 

under both current conditions and potential future net metering conditions. 

6.2.1.2 Scenario 7d: Thermal Oil Heater, Lystek 

Under Scenario 7d, the biogas produced by WAS lysis and digestion would be sent to a thermal oil heater 

and Lystek would be implemented after anaerobic digestion. No natural gas was supplemented under this 
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scenario. As discussed previously, since Scenario 7 is not impacted by net metering, Scenario 7d applies 

under both current conditions and potential future net metering conditions. 

6.2.1.3 Scenario 9c: Turbine CHP, PAD, No Net Metering 

Under Scenario 9c, the biogas produced by WAS lysis and digestion would be sent to a turbine and PAD 

would be implemented after anaerobic digestion. Current conditions with no net metering were assumed, 

so the net electricity production was not allowed to exceed 1250 kW under this scenario. Natural gas was 

supplemented at a rate of 6 mmBTU/hr to meet the current Plant capacity. 

6.2.1.4 Scenario 9d: Turbine CHP, Lystek, No Net Metering 

Under Scenario 9d, the biogas produced by WAS lysis and digestion would be sent to a turbine and 

Lystek would be implemented after anaerobic digestion. Current conditions with no net metering were 

assumed, so the net electricity production was not allowed to exceed 1250 kW under this scenario. 

Natural gas was supplemented at a rate of 2.5 mmBTU/hr to meet the current Plant capacity. 

6.2.1.5 Scenario 9e: Turbine CHP, PAD, Net Metering 

Under Scenario 9e, the biogas produced by WAS lysis and digestion would be sent to a turbine and PAD 

would be implemented after anaerobic digestion. Net metering was assumed for this scenario. The 

turbine was supplemented with 9.5 mmBTU/hr of natural gas to maximize its production. 

6.2.1.6 Scenario 9f: Turbine CHP, Lystek, Net Metering 

Under Scenario 9f, the biogas produced by WAS lysis and digestion would be sent to a turbine and 

Lystek would be implemented after anaerobic digestion. Net metering was assumed for this scenario. The 

turbine was supplemented with 9.5 mmBTU/hr of natural gas to maximize its production. 

6.2.2 Thermal Oil Heater Analysis 

Table 26 summarizes the results of the thermal oil heater scenarios, including Scenarios 7a and 7b 

(which are combined, since they are identical) for comparison; Figure 12 presents the results. The results 

show that PAD essentially does not impact the annualized cost, in large part due to the additional 

reduction in digested solids for disposal. Lystek, which has a greater capital cost, adds to the annualized 

cost. 

Table 26: Thermal Oil Heater Analysis Results 

Scenario 

No. 
Scenario 

Annualized 

Cost ($) 

GHG 

Reduction 

(MT eCO2) 

Net 

kW 

Total 

Project Cap 

Ex ($) 

7a/b Thermal Oil Heater $4,828,000  2,420  486  $43,500,000  

7c Thermal Oil Heater, PAD $4,821,000  120  23  $47,000,000  

7d Thermal Oil Heater, Lystek $5,464,000  1,290  413  $53,000,000  
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Figure 12: Thermal Oil Heater Analysis Results 

In addition to the cost benefits of PAD, the process provides nutrient removal, which may become an 

issue for the Plant in the future. The main advantage of Lystek over PAD is that it insulates the Plant from 

volatility in disposal/end use costs, which have the largest impact of any variable on annualized cost. 

Figure 13 shows how annual costs for Scenario 7a/b, Scenario 7c, and Scenario 7d vary with contract 

hauling cost. Rising hauling costs increase the annualized costs of Scenarios 7a/b and 7c, but do not 

impact the costs of Lystek. It should be noted that with the thermal oil heater option, none of the 

scenarios are impacted by the implementation of net metering. 
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Figure 13: Thermal Oil Heater Contract Hauling Sensitivity Analysis 

6.2.3 Turbine CHP Analysis 

Table 27 summarizes the results of the turbine CHP scenarios, which include scenarios covering 

permutations with PAD, with Lystek, with and without net metering. Figure 12 presents the model results. 

The addition of PAD and Lystek had similar effects to the turbine scenario as was seen in Scenario 7 

analysis. One difference is that PAD adds significant electrical demand to allow the turbine capacity to 

become better utilized even without net metering. The sensitivity analysis conducted for Class B contract 

hauling price for the Scenario 7 sub-scenarios applies to the turbine CHP analysis as well. 

As described in early scenario analyses, addition of net metering improves the turbine CHP economic 

performance under all conditions. This is because the turbine is able to operate near its rated output 

which improves efficiency and utilizes installed generation capacity to its fullest extent. 
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Table 27: Turbine CHP Analysis Results 

Scenario 

No. 
Scenario 

Annualized 

Cost ($) 

GHG 

Reduction 

(MT eCO2) 

Net 

kW 

Total Project Cap 

Ex ($) 

9a Turbine CHP, No Net Metering $4,871,000  4,840  969  $48,600,000  

9b Turbine CHP, Net Metering $4,518,000 6,350 2,112 $48,600,000 

9c 
Turbine CHP, PAD, No Net 

Metering 
$4,681,000 3,190 1,169 $52,100,000 

9d 
Turbine CHP, Lystek, No Net 

Metering 
$5,445,000 3,870 1,150 $58,100,000 

9e 
Turbine CHP, PAD, Net 

Metering 
$4,559,000 3,680 1,577 $52,100,000 

9f 
Turbine CHP, Lystek, Net 

Metering 
$5,155,000 5,220 2,039 $58,100,000 

 

 

Figure 14: Turbine CHP Analysis Results 
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One benefit to the turbine CHP option over the thermal oil heater option is that, should net metering be 

available in the future, the turbine CHP is capable of taking advantage by increasing electricity 

production. The thermal oil heater is not capable of producing surplus energy. As seen by comparing 

Scenario 9a to 9b, 9c to 9e, and 9d to 9f, net metering would lower the cost of any of the future buildout 

scenarios. 

6.2.4 Comparison of Thermal Oil Heater to Turbine CHP 

A sensitivity analysis of electricity prices was conducted to compare the thermal oil heater option to the 

turbine CHP option. For both options, the scenarios without either PAD or Lystek were compared, and the 

scenarios with PAD were compared. Scenarios were considered both with and without net metering. 

Figure 15 presents the results. 

 

Figure 15: Electricity Sensitivity Analysis 

The analysis shows that the turbine option is more heavily influenced by electricity prices than the thermal 

oil heater option. Net metering, which does not impact the thermal oil heater option, increases the 

influence of electricity prices. This trend is because options that produce greater amounts of electricity 

increase the impact of changing electricity prices. Lower electricity prices tend to decrease the benefits of 

the turbine option relative to the thermal oil heater.  
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7 RECOMMENDATIONS 

7.1 Solids Handling Recommendations 

Based on the modeling results and feedback from ACWPD and SCSD, it is recommended that the 

counties pursue a regional biosolids handling facility. Figure 16 presents a conceptual site plan for the 

facility, showing the potential location of all the equipment. Sludge cake and liquid sludge hauled from the 

South Plant and the SCSD Plant, as well as any other participating facilities, would be received at the 

sludge receiving station located adjacent to the sludge holding tanks. Cake would be thinned to 6% TS at 

this station using unthickened WAS generated by the North Plant, and the rewetted cake would be sent to 

the sludge holding tanks where it would be combined with primary sludge produced at the North Plant. 

Combined sludge from the sludge holding tanks would be pumped to the solids disposal building, where it 

would undergo sludge screening and gravity belt thickening in new thickening equipment installed in 

place of the existing DAFTs. Thickened combined sludge would be discharged from the GBTs at 8% TS 

and sent to the thickened sludge wet well below the thickening equipment. 

Using the average loading numbers, the model predicts that approximately 72,000 gal/day of unthickened 

North Plant WAS would be required to rewet sludge cake. The balance of the unthickened WAS would be 

pumped directly to the solids disposal building, where it would pass through sludge screens and be 

thickened to 8% TS by GBTs. Thickened WAS would then be sent to a WAS lysis system installed 

adjacent to the sludge thickening equipment. Figure 17 presents a conceptual layout of this equipment in 

the existing DAFT area. In the lysis reactor, caustic would be injected to raise the pH and hot water would 

be used to increase the temperature of the WAS and break apart the biomass. The resulting lysed 

stream, still at 8% TS, would be sent to the thickened sludge wet well and combined with the thickened 

sludge from the sludge holding tanks. The resulting stream would be pumped to the digesters as feed. 

Parallel to the sludge streams, a FOG receiving station would be installed adjacent to the digesters as 

shown in Figure 16. This station would consist of a truck offloading slab next to three 40,000 gallon 

insulated and heated FRP tanks. FOG would be kept heated and recirculated while stored in these tanks 

to prevent solidifying. The FOG stream would be pumped directly to the digesters and fed parallel to the 

sludge stream. 

To provide the required digester SRT and redundancy, three 95-ft diameter digesters are recommended. 

Two of these digesters operated in parallel are sufficient to achieve the 20-day SRT required for 

mesophilic anaerobic digestion. The third would operate as a secondary digester, providing storage 

downstream of the digesters when required. The digester facility would include a new mechanical building 

to house pumps and heat exchangers. Floating steel covers mounted with linear motion mixers are 

recommended to mix the digesters and store biogas produced. 

Residual digested solids would be sent to the existing BFPs in the solids disposal building, which would 

dewater the material. The resultant cake would be conveyed to a new offloading facility located to the 

south of the solids disposal building, where it would be picked up by a contract hauler as a Class B 

material.
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As discussed previously, the recommended configuration represents the first step in a phased approach. 

The recommended option can be relatively easily expanded to include either PAD or Lystek in the future. 

The expansion would allow the third anaerobic digester to be operated in parallel as a primary digester, 

since PAD or Lystek would essentially take over as a secondary digester. This would expand the capacity 

of the facility and allow for the import of additional outside material to increase gas production to enable 

generation of surplus power and to realize additional tipping fees. 

Addition of high strength waste (HSW) can also be considered for future expansion of the regional 

biosolids facility. It should be noted that net metering or some type of market pricing change would need 

to be enacted to allow the regional facility to beneficially utilize additional energy generation potential that 

is provided from this HSW. 

7.2 Biogas Utilization Recommendations 

A secondary analysis was conducted to determine the most beneficial biogas utilization configuration. 

Two main options were considered for inclusion in the regional biosolids facility: 

• Install a thermal oil heater in the thermal oil loop which operates the ORC. The heater would be 

fired off the biogas produced by digestion, as well as supplemented with natural gas if 

necessary. This biogas heater would essentially replace the hot oil heaters currently installed in 

the incinerator exhaust stack, which heat the thermal oil loop using incinerator flue gas.  

 

• Install a CHP turbine unit adjacent to the ORC. This turbine would be fired off the biogas 

produced by digestion, as well as supplemented with natural gas if necessary. The exhaust from 

the turbine would be ducted into the existing incinerator exhaust stack, and new thermal oil heat 

exchangers would be installed in the stack to allow the ORC to be operated off the reclaimed 

heat from the turbines. An existing thermal oil/water heat exchanger would allow the thermal oil 

loop to provide heat to the digesters and buildings as well. 

Under current conditions without net metering or robust generation incentives for renewable energy, 

thermal oil heaters and turbines are projected to have comparable annualized costs. The thermal oil 

heater option has lower capital cost than the CHP turbine option. However, if net metering becomes 

available or market pricing for renewable energy or renewable energy attributes becomes more valuable, 

the analysis shows that the turbine option becomes cheaper on an annualized cost basis due to the ability 

to produce excess electricity. The turbine option is also more sensitive to electricity prices, resulting in 

greater flexibility to respond to changing energy prices. Additionally, the turbine option better suits a future 

expansion to PAD given its ability to offset energy use. 

Based on the analysis, PAD and Lystek both show potential as future expansion options. PAD is less 

expensive and provides sidestream nutrient removal, which could be a benefit in the future. PAD also can 

function as a secondary digester/holding tank which would free up additional digester capacity as units 

would eventually have to be taken offline for cleaning. Lystek provides insulation from volatility in contract 

hauling prices for Class B material. The initial regional biosolids facility should be constructed with either 

of these two processes in mind for future expansion. As the future drivers addressed by these processes 

develop, the value of these processes will become more clearly defined and likely warrant 

implementation.    
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7.3 Governance Recommendations 

As part of the feasibility study, Raftelis Financial Consultants, Inc. (Raftelis) was engaged to identify and 

evaluate various governance structure alternatives to support the ownership, operation, maintenance, 

and funding of the facility. Raftelis identified two predominant alternatives that ACWPD and SCSD could 

utilize for the governance and management of a joint biosolids handling facility. These are (1) forming a 

separate, independent Authority, and (2) entering into a “joint services” intermunicipal agreement (IMA). 

Both of these alternatives are enabled under New York State Municipal Law, and both would allow the 

districts to take advantage of the economies of scale associated with jointly developing a biosolids 

handling facility. However, Raftelis found that sharing services under an IMA has advantages of the 

Authority alternative in that it is simpler, requires the least amount of change, may be the most cost-

effective alternative to establish and maintain, and is likely to take the least amount of time to establish. 

Raftelis’ memo is provided in Appendix D. 

7.4 Funding Opportunities 

There are various funding opportunities available to ACWPD and SCSD to support implementation of this 

project . 

7.4.1 New York State Environmental Facilities Corporation 

New York State enacted the Clean Water Infrastructure Act of 2017. The Clean Water Infrastructure Act 

of 2017 invests $2.5 billion in clean and drinking water infrastructure projects and water quality protection 

across New York. Clean water projects may be eligible for a Water Infrastructure Improvement Act (WIIA) 

grant of up to the lesser of $5 million or 25% of the total net project costs after deducting other grant 

funds awarded for the project. Intermunicipal Water Infrastructure (IMG) grants are available for clean 

water projects that serve multiple municipalities, for example, a shared water quality infrastructure project 

or interconnection of multiple municipal water quality infrastructure projects. Cooperating municipalities 

with eligible projects may be awarded an IMG grant up to $10 million or 40% of net eligible project costs, 

whichever is less. 

It appears that this project will meet the requirements for the IMG grant. These grants are competitive and 

are available during the open consolidated funding application (CFA) period typically in May through July. 

A preliminary engineering report, a Board resolution and an executed intermunicipal agreement are 

required for submission prior to applying for the IMG grant through the CFA from the New York State 

Environmental Facilities Corporation. 

7.4.2 New York State Department of Environmental Conservation 

The New York State Department of Environmental Conservation administers the Water Quality 

Improvement Project (WQIP) program and the Climate Smart Communities program.  

The WQIP program funds projects that directly address documented water quality impairments. The 

competitive, statewide grant program is open to local governments and not-for-profit corporations. Grant 

recipients may receive up to 85% of the project costs for high priority wastewater treatment improvement 

projects or up to 40% for general wastewater infrastructure improvement projects. If PAD was 
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implemented, there would be a direct reduction in nutrient (phosphorous and nitrogen) discharge from the 

North Plant.  Most likely this would qualify for 40% funding as a single project of $3.5M.  

The Climate Smart Communities program has several methods receiving funding through the increase of 

renewable energy (biogas) or reducing greenhouse gas inventories. Both could be achieved by replacing 

the incinerators in Saratoga and Albany Counties with anaerobic digesters with CHP for energy 

production. The amount of the available funding is unknown currently. 

7.4.3 New York State Energy Research & Development Authority 

The New York State Energy Research and Development Authority (NYSERDA) provides financial 

incentives and grants for projects that support the State’s Clean Energy Fund (CEF) and Reforming the 

Energy Vision (REV) goals.  In fact, NYSERDA funding was used to partially fund this study.  Other 

potential funding sources that may be available from NYSERDA to support implementation and long-term 

operation of the project include: 

• Clean Energy Communities (CEC) Program – Those local governments that have enrolled in the 

CEC Program and met specific criteria have the potential to receive up to $250,000 of grant 

money to support clean energy projects.   

• On-site Energy Manager Pilot – Although the program may no longer be available by the time the 

facility is operational, it is worth considering this program as a means to retain a full-time on-site 

energy manager to support facility-wide energy performance, while also optimizing performance 

and generation associated with the project.  Through this program, NYSERDA will pay up to 75% 

of the cost to have a full-time on-site energy manager for 15 months, up to a maximum of 

$175,000.  Additional milestone incentives are available if specific objectives are met. 

• Industrial Process Efficiency (IPE) Program – The IPE program provides performance-based 

incentives for projects that result in energy savings or efficiency improvement.   Projects that 

achieve savings through improved operations and maintenance receive $0.04/kWh saved or 

$3/MMBTU saved.  Process and energy-efficiency projects receive an incentive of $0.10/kWh 

saved or $6/MMBTU saved.  The maximum incentive is 50 percent of the project cost, capped at 

$500,000 for fossil fuel savings and $1,000,000 for electricity savings. 

• NYSERDA is developing one or more new CEF programs focused on the wastewater sector.  

There may be an opportunity to help shape these programs or to access grants or cost-share 

through these programs to support demonstration of new or emerging technologies that provide 

energy savings. 

• Renewable Energy Credits (REC) Auction – Periodically NYSERDA manages auctions for RECs 

to support development and operation of green power.  Typically, these are geared toward large, 

utility scale projects (e.g., wind farms).  However, there may be an opportunity to sell RECs either 

through this mechanism to increase the value of the generated electricity associated with the 

project. 
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7.4.4 Other Funding Sources 

In addition to the funding sources identified above, there may be an opportunity to enter into a power 

purchase agreement (PPA) with the State of New York directly through the New York State Office of 

General Services or the New York Power Authority to sell green power and receive a higher value for the 

electricity that is generated as part of this project.  Similar opportunity may be available through a PPA 

with another interested party.   Discussion has commenced related to sale to the State of New York and 

further assessment cannot be made at this time.  Ultimately, the costs and complexity of developing the 

PPA, as well as the ongoing costs to measure and certify the amount of green electricity being sold, will 

need to be considered to determine the overall viability of either approach.  
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